

Our senior design project focuses on developing a system to assist umpires in detecting illegal
pitches in slow-pitch softball games. The problem arises from the challenge of accurately
determining whether a pitch falls outside the legal bounds of 10 to 12 feet in height, leading to
inconsistent calls and disputes. Our solution aims to eliminate this ambiguity, allowing umpires to
focus on other aspects of the game while ensuring fairness and accuracy.

To address this issue, we are designing a mobile application that leverages computer vision and
machine learning to analyze softball pitches in real-time. This approach removes the need for
leagues to invest in expensive or specialized hardware, making our solution cost-effective and
accessible to a wide range of users. The app uses OpenCV and YOLO (You Only Look Once) for
object detection and tracking, enabling it to identify the softball and monitor its trajectory
throughout the pitch.

Key design requirements include accuracy in determining pitch legality, minimal interference with
the flow of the game, and affordability for users. Feedback from current umpires has validated these
priorities, and our design aligns with their expectations.

Thus far, we have implemented C++ code for detecting and tracking the softball using YOLO and
OpenCV. Additionally, we have developed calibration functionality that allows the user to define
key reference points—such as the pitcher's mound and home plate—and input the camera's height.
This calibration maps the physical space into a frame of reference, enabling precise height
calculations for the pitch and determining whether it is legal.

Our design meets the defined requirements by ensuring the app runs smoothly on readily available
smartphones, avoiding the need for additional hardware. Accuracy is achieved through thorough
testing and adjustments in calibration and tracking. The next steps include integrating the
calibration and tracking code into the Flutter app, creating a seamless user interface, and
conducting comprehensive real-world testing to further refine performance.

By enabling umpires to confidently identify illegal pitches, our product aims to improve the quality
and fairness of games while maintaining accessibility and usability for all levels of softball leagues.

Learning Summary

Summary of Requirements

- Object detection system to locate a softball at its maximum height during a

pitch

- Detect an illegal pitch when a softball’s maximum height is higher than the

specific maximum height or below the specific minimum height.

- Create an audible sound indicating an illegal pitch

- The device cannot be physically obstructive to the game.

- The device must accommodate different fields, lighting, and balls.

- The device cannot be visually distracting to the game.

- The device must have a guided and simple setup.

- The device must have user-adjustable settings for the maximum and

minimum height for pitches.

New Skills/Knowledge acquired that was not taught in courses
- Computer Vision

- Machine learning applications

- Flutter framework

- iOS development

Table of Contents
1. Introduction 5

1.1. PROBLEM STATEMENT 5

1.2. INTENDED USERS 5

2. Requirements, Constraints, And Standards 5

2.1. REQUIREMENTS & CONSTRAINTS 5

2.2. ENGINEERING STANDARDS 5

3 Project Plan 6

3.1 Project Management/Tracking Procedures 6

3.2 Task Decomposition 6

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

3.4 Project Timeline/Schedule 6

3.5 Risks And Risk Management/Mitigation 7

3.6 Personnel Effort Requirements 7

3.7 Other Resource Requirements 7

4 Design 7

4.1 Design Context 7

4.1.1 Broader Context 7

4.1.2 Prior Work/Solutions 8

4.1.3 Technical Complexity 8

4.2 Design Exploration 9

4.2.1 Design Decisions 9

4.2.2 Ideation 9

4.2.3 Decision-Making and Trade-Off 9

4.3 Proposed Design 9

4.3.1 Overview 9

4.3.2 Detailed Design and Visual(s) 9

4.3.3 Functionality 10

4.3.4 Areas of Concern and Development 10

4.4 Technology Considerations 10

4.5 Design Analysis 10

5 Testing 10

5.1 Unit Testing 11

5.2 Interface Testing 11

5.3 Integration Testing 11

5.4 System Testing 11

5.5 Regression Testing 11

5.6 Acceptance Testing 11

5.7 Security Testing (if applicable) 11

5.8 Results 11

6 Implementation 12

7 Professional Responsibility 12

7.1 Areas of Responsibility 12

7.2 Project Specific Professional Responsibility Areas 12

7.3 Most Applicable Professional Responsibility Area 12

8 Closing Material 12

8.1 Conclusion 12

8.2 References 13

9 Team 13

9.1 TEAM MEMBERS 13

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT 13

(if feasible – tie them to the requirements) 13

9.3 SKILL SETS COVERED BY THE TEAM 13

(for each skill, state which team member(s) cover it) 13

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 13

Typically Waterfall or Agile for project management. 13

9.5 INITIAL PROJECT MANAGEMENT ROLES 13

9.6 Team Contract 13

1. Introduction

1.1. PROBLEM STATEMENT

In the game of softball, one crucial rule states that a pitch is only legal if the ball reaches its peak
height within a minimum and maximum height bound during its flight to the batter. Currently,
umpires must estimate this height by eye for every single pitch: a challenging task that relies heavily
on personal judgment and can vary from one umpire to another. This reliance on subjective
estimation can lead to inconsistent calls, potentially altering the outcome of games and affecting
the fairness and enjoyment of the sport. Players might strike out on pitches that should have been
deemed illegal, and fans may witness games swayed by questionable decisions. These issues
highlight a broader problem: the lack of accessible technology to assist in making precise, real-time
measurements during games. To address this, we are developing an affordable and user-friendly
device that tracks each pitch using a single camera, accurately measures the ball's height using
machine learning, and alerts officials when a pitch falls outside the legal bounds. By eliminating the
guesswork from pitch height estimation, we aim to enhance the accuracy of calls, uphold the
integrity of the game, and improve the experience for players, umpires, and fans alike.

1.2. INTENDED USERS

Our product is designed to benefit several key groups within the softball community, including
umpires, players, fans, and coaches.

1. Umpires
a. Description: Umpires are the officials responsible for enforcing the rules of

softball during games. They must make quick, accurate decisions under the
pressure of real-time play, often without technological assistance.

b. Needs: Umpires need a reliable method to accurately determine if a pitch meets
the legal height requirements, reducing the reliance on subjective judgment and
minimizing errors that could impact the game's outcome.

c. Benefits: Our device provides umpires with precise, real-time measurements of
each pitch's height. This technology aids them in making consistent and accurate
calls, reducing stress and enhancing their confidence in officiating. By supporting
umpires with accurate data, we help maintain the game's fairness and integrity,
directly addressing the issues outlined in our problem statement.

2. Players
a. Description: All players in a softball game are directly affected by the calls made

by umpires and strive for a fair and competitive environment to showcase their
skills.

b. Needs: Players need assurance that the rules are being applied consistently so that
their performance is judged fairly. Batters, in particular, need protection from
illegal pitches that could unfairly result in strikeouts.

c. Benefits: With our device ensuring accurate detection of illegal pitches, players
can trust that the game is being officiated fairly. Batters are less likely to be unfairly
penalized, and pitchers receive clear feedback on the legality of their pitches. This
fosters a fair playing field and allows players to focus on their performance,
enhancing the game's overall quality in line with our problem-solving goals.

3. Fans
a. Description: Fans are the spectators who enjoy watching softball games, whether

in person at the stadium or through broadcasts. They are passionate about the
sport and value exciting, fair competition.

b. Needs: Fans desire an enjoyable viewing experience where player skill rather than
officiating errors determine the game's outcome. They appreciate transparency and
fairness in how the game is played and called.

c. Benefits: By improving the accuracy of pitch legality calls, our device enhances the
fairness and excitement of the game, leading to a more satisfying experience for
fans. They can enjoy the sport knowing that technology is helping to uphold its
integrity, which aligns with our aim to improve the overall enjoyment of softball.

4. Coaches and Teams
a. Description: Coaches and team staff are responsible for training players and

developing game strategies. They work closely with players to improve skills and
ensure compliance with the rules.

b. Needs: Coaches need effective tools to train pitchers on delivering legal pitches
and to adjust strategies based on accurate information about gameplay.

c. Benefits: Our device can be used during practices to provide immediate feedback
to pitchers on the height of their pitches, aiding in skill development and rule
compliance. During games, accurate officiating supported by our product allows
coaches to focus on strategy without worrying about inconsistent calls. This
directly enhances player performance and upholds fair competition, as highlighted
in our problem statement.

By serving these users, our product addresses the critical issue of subjective pitch height estimation
in softball. It promotes fair play, enhances the accuracy of officiating, and improves the overall
experience for everyone involved in the sport. Our solution connects directly to our overarching
goal of removing guesswork from the game, ensuring that softball is enjoyable, fair, and competitive
for all participants

2. Requirements, Constraints, And Standards

2.1. REQUIREMENTS & CONSTRAINTS

Functional Requirements

- Object detection system to locate a softball at its maximum height during a pitch.
- Detect an illegal pitch when a softball’s maximum height is higher than the specific

maximum height or below the specific minimum height. (constraint)
- Create an audible sound indicating an illegal pitch

Physical Requirements

- The device cannot be physically obstructive to the game.
- The device must be portable to set up on a softball field.

Environmental Requirements

- The device must accommodate different fields, lighting, and balls.
- The device cannot be visually or audibly distracting to the game.

UI Requirements

- The device must have a guided and simple setup.
- The device must have user-adjustable settings for the maximum and minimum height for

pitches. (constraint)

Constraints

- Maximum height (in feet) the softball can reach on a serve.
- Minimum height (in feet) the softball must reach on a serve.
- The device cannot be physically obstructive to the game.

2.2. ENGINEERING STANDARDS

The Importance of Engineering Standards (Q1)

Engineering standards are important because people interact with engineering products every day.
If there were no engineering standards, that would not only compromise the desired quality of
engineering products but also affect things like the safety of everyday people. For example, people
interact with civil engineering like bridges and buildings, and non-physical structures like apps and
programs. A lack of requirements for these products could result in catastrophic failures of civil
structures or a breach of confidential personal data from an insecure application. Engineering
standards help ensure that these types of issues are avoided so people can continue to use these
products to improve their lives and the lives of others

Published Engineering Standards (Q2)

- IEEE 1857.9-2022 provides standards for video encoding/decoding and analyzing methods.
These standards apply to all forms of video manipulation, spanning from areas such as
network video transmission over services such as UDP to computer vision topics such as
object detection.

- IEEE P3110 provides the standards for the necessary API requirements in a computer vision
implementation. These API abstractions interface with various machine learning
algorithms and are used to develop computer vision solutions such as OpenCV.

- IEEE 1008-1987 provides guidelines for proper unit testing with a codebase. Specifically,
guidelines exist for proper categories of testing (unit, integration, etc.) and code coverage
reporting, among other testing-related requirements.

Engineering Standards Relevancy (Q3)

After reviewing the three standards, each has varying relevance to our project. Since our primary
focus is on computer vision, IEEE P3110 is highly applicable. This standard provides guidelines for
API requirements in computer vision and will help us ensure our project adheres to best practices
when working with machine learning algorithms like OpenCV. It offers a strong foundation for
structuring our computer vision solution. IEEE 1008-1987 also holds some relevance, as it provides
useful guidelines for software testing. While our project’s smaller scale, incorporating structured
unit testing can still improve code reliability. On the other hand, IEEE 1857.9-2022 is less applicable
since it focuses more on video encoding and compression, which isn’t central to our object
detection work.

Other Applicable Standards (Q4)

Some of the standards we found that differed from those provided that might be at least somewhat
applicable to our project are below. IEEE Standard Digital Interface for Programmable
Instrumentation. This standard applies because we use equipment and information that takes in
different measurements. We will use different types of instrumentation that may be programmable
to detect the softball. IEEE Standard for Application Programming Interfaces (APIs) for Deep
Learning (DL) Inference Engines. This engineering standard is applicable because we are
programming a solution to consistently and accurately find the height of a softball, including deep
learning and AI-based detection algorithms. IEEE Standard Letter Symbols for Units of
Measurement (SI Customary Inch-Pound Units, and Certain Other Units). This standard is
applicable because it ensures that we incorporate the appropriate symbols for our measurement
and that it is understood clearly using accurate measurements and symbols.

Modifying Our Project to Incorporate Engineering Standards (Q5)

Since our design is not finalized as we continue to test and prototype different designs, we don’t
need to make any modifications now. However, several of these standards must be considered as we
proceed with our design. Firstly, as we develop the software component of the project, we will need
to keep in mind IEEE 1008-1978 regarding unit testing. We need to ensure that we are writing the
software in a way that can be easily tested. We will also need to consider IEEE P3110 which covers
standards with computer vision. Since many of us have never built an official project using
computer vision, it is not natural to consider these standards. Moving forward, standards like this
one must be considered during design

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We decided to adopt an AGILE methodology to manage our project. There are complex
components we need to manage with our app. These components include our height detection
script utilizing a hybrid machine and non-machine learning approach and a mobile app utilizing
Flutter and Dart FFI. To make development more manageable, we can divide the work into AGILE
sprints with smaller goals, so we are not trying to tackle the entire project at once. This will improve
our understanding of individual project components and help make a full implementation easier. To
keep track of our progress, we are utilizing Git issues coupled with personal branches for individual
development. Having an issues board will help us manage what tasks must be done. Using personal
branches will help isolate development so we can develop individual components more efficiently
without accidentally breaking the project's main branch or having more than one person alter the
same file in different ways.

3.2 TASK DECOMPOSITION

These tasks are intentionally left broad since we have not made final decisions on the entire design.
Based on the agile methodology, many of these tasks will be adjusted as development continues and
we receive feedback from the client. Any testing and prototyping we do could also affect our final
implementation of these tasks. With this task decomposition, we split the project into two major
tasks: detecting illegal pitches and developing the mobile application. These two tasks pretty much
sum up our project but are still broken down further in the image above.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

What are some key milestones in your proposed project? It may be helpful to develop these
milestones for each task and subtask from 3.2. How do you measure progress on a given task? These
metrics, preferably quantifiable, should be developed for each task. The milestones should be stated
in terms of these metrics: Machine learning algorithm XYZ will classify with 80% accuracy; the
pattern recognition logic on FPGA will recognize a pattern every 1 ms (at 1K patterns/sec
throughput). ML accuracy target might go up to 90% from 80%.

In an agile development process, these milestones can be refined with successive iterations/sprints
(perhaps a subset of your requirements applicable to those sprint).

3.4 PROJECT TIMELINE/SCHEDULE

Above is our proposed AGILE project timeline, featuring a clearly outlined sequential list of
milestones. Our project has been separated into four parallel-running distinct categories: the
research category, in which project specific applications and approaches are thoroughly assessed
and evaluated, the design category, where compiled research is initially primed for development,
the implement category, where designs created are prototyped and implemented into real
applications, and the testing category where implementations are tested for their correctness and
efficiency. Following an AGILE methodology, we have separated our project timeline into roughly
one-week sprints where certain tasks are scheduled for completion. Each bar on the above Gantt
chart represents a deliverable within an AGILE timeframe set to expire at the bar's end. Holistically,
the above Gantt chart can be summarized in sprints as follows:

Timeframe/Deliverables

10/15 - 10/20 (Sprint 1)

- Machine learning vs. non-machine learning research
- Mobile application screen sketch design

10/21- 10/27 (Sprint 2)

- Flutter app research
- Object detection prototype

10/28 - 11/03 (Sprint 3)

- Object detection prototype testing
- Flutter and C++ integration research and development

11/04 -11/10 (Sprint 4)

- Implementation of object detection within mobile application

11/11 -11/17 (Sprint 5)

- Height calculation research
- Modular design of full-stack application
- ML model testing

11/18 -11/24 (Sprint 6)

- Height detection prototyping

11/25 - 12/01 (Sprint 7)

- ML model training techniques research (model refinement)
- Full stack application implementation

12/02 - 12/08 (Sprint 8)

- Height detection testing

12/09 - 12/13 (Sprint 9)

- Mobile app integration testing

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Sprint 1:

- Risks:
- ML may be overkill for object detection and too resource-intensive. (prob: 0.5)
- Non-ML methods might lack the needed accuracy. (Prob: 0.6)

- Mitigation:
- Explore using a combination of ML and non-ML strategies. ML can be used to

check our non-ML tracking to correct for deviation.

Sprint 2:

- Risks:
- Flutter’s limitations in handling real-time processing or specific hardware task.

(Prob: 0.3)
- Object Detection prototype may not achieve the required performance or accuracy.

Also may not integrate well with Flutter. (Prob: 0.9)
- Mitigation:

- Rework prototype to use (C++/OpenCV) instead of Python.

Sprint 3:

- Risks:
- Compatibility issues with FLutter and C++ integrations, particularly in efficient

data passing. (Prob: 0.5)

- Performance drop when integrating object detection into the mobile interface.
(prob: 0.4)

- Mitigation:
- Use Native Flutter plugins if integration lags. Test different data-handling

techniques (i.e. JSON or shared libraries) to see what works best.

Sprint 4:

- Risks:
- Computing power of mobile devices may limit detection effectiveness. (Prob: 0.6)
- App design may require significant performance tuning to be responsive. (Prob:

0.5)
- Mitigation:

- If mobile limitations are severe, explore using lightweight detection models like
TensorFlow Lite.

- Set up performance tests in this sprint to identify bottlenecks.

Sprint 5:

- Risks:
- Height calculations may require a more complex algorithm than anticipated. (Prob:

0.5)
- Modular design complexity might extend timelines. (Prob: 0.4)

- Mitigation:
- Prioritize simple algorithms and add complexity only as needed.
- Break down modular design into manageable components and integrate one at a

time.

Sprint 6:

- Risks:
- Height detection requires more data points or higher resolution. (Prob: 0.5)
- Prototype might need hardware not accessible or feasible on mobile devices (Prob:

0.3)
- Mitigation:

- Consider using simpler relative height detection if absolute values are challenging.
- Explore OpenCV’s scaling and resolution techniques.

Sprint 7:

- Risks:
- Model training techniques could require extensive datasets not readily available.

(Prob: 0.6)
- Full-stack implementation might increase overhead and limit application speed.

(Prob: 0.4)
- Mitigation:

- Consider using pre-trained models to limit the computational needs of training a
new model.

Sprint 8:

- Risks:
- Detection algorithms may not generalize well across different test conditions.

(Prob: 0.5)
- Mitigation:

- Run multiple rounds of testing in varied lighting/angles and adjust thresholds.
Update algorithms or training data based on observed issues.

Sprint 9:

- Risks:
- Final app integration may encounter unexpected platform constraints, e.g.,

compatibility issues on different devices (Prob: 0.5)
- Mitigation:

- Use platform-specific checks to handle potential discrepancies.
- Testing should include various devices, screen sizes, and operating systems.

3.6 PERSONNEL EFFORT REQUIREMENTS

Team Member Task Descriptions Hours Worked

Sullivan Fair Prototype object detection scripts, Screen sketches,
MOSSE object detection script, C++/Flutter integration
research, C++/Flutter integration prototype, Initial
Flutter screens, Created OpenCV/Tracking framework,
C++ tracking code reduction

57

Casey Gehling Flutter screen development, C++/Flutter integration
research, codebase hygiene maintenance, field
research, video caching implementation, client
interaction/team interaction

59

Ethan Gruening Prototype object detection scripts, train a custom
YOLO model, research existing products, collect pitch
videos, prototype color calibration scripts, prototype
camera undistortion scripts, create a Flutter camera
setup to determine known heights, set up automatic
compilations for iOS and Android.

70

Josh Hyde

Cameron Mesman Flutter screen mock-ups, integrating C++ code into
flutter, integrating illegal pitch audio into flutter code

50

Andrew Vick Prototype object detection code, translate python
scripts into C++, prototype detection and tracking code

running on iPhone, Integrate tracking code and object
detection

3.7 OTHER RESOURCE REQUIREMENTS

Developing a mobile application, our team already owns cell phones to test our Flutter applications
on iOS and Android operating systems. The primary resources our team has and will continue
utilizing are Iowa State’s recreational softball fields. Field availability is crucial for the research and
testing for proper camera setup, object detection, and in-game functionality. Field reservations will
be made as needed for future testing.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Area Description Examples
Public health,
safety, and
welfare

Our project is a bystanding officiary to an
existing softball game, an environment
with a high risk for player injury. Our
design must be non-intrusive and not be
in the way of gameplay. There should be
little to no contact between the game
activity and our physical device to ensure
public safety.

Considering public safety, our setup
is a mobile device placed on a
mount along the fence. This ensures
minimal physical interaction
between the players and the device,
limiting additional risk for the
players.

Global, cultural,
and social

Slow-pitch softball is a variation of a
typical softball game for more novice
players. Local leagues and amateur
slow-pitch players are our target
communities and it is our mission to
ensure this device is catered to their
financial and accessible needs.

As engineers, our social and ethical
responsibility is to create a design
to accommodate local leagues. Our
design as a mobile application
opens our user base to all people
with smartphones. This addresses
the low-cost and portable solution
that local leagues would require.

Environmental Since our project is very niche, there is
little to no environmental impact when
using our product. However, it is
important to recognize the
environmental impact of materials and
power consumption of the operating
devices.

Our product can be downloaded
onto a user’s smartphone to limit
additional electrical components.
Additionally, a power supply for the
smartphone will need to be
provided and may require a battery
charger for prolonged extended
use.

Economic Catering to local slow-pitch leagues, we
must consider how our product will
impact the league's funds for both umpire
training and operation.

Our product will be affordable for
all users within a slow-pitch league
since it requires an existing
smartphone. A simple setup

ensures that there will be little time
training umpires to use the
application or set it up before a
game.

4.1.2 Prior Work/Solutions

Include relevant background/literature review for the project (cite at least 3 references for literature
review in IEEE Format. See link:
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf)

Beginning our discussions on our project design, we researched existing products and solutions for
cameras that can track balls within a sports setting. Analyzing the existing products, their user
reviews, and their targetted impact helped our team decide what approach would best suit our
project.

The first product we researched was the Specialized
Imaging Tracker 2, a high-speed fast projectile
measurement camera. This camera has three-axis
rotation for camera positioning and is programmable for
customization. Many users liked the full remote
operation, multiple operating modes, tight accuracy
error margins, and no need for calibration. However, this
is a research-grade camera with a high cost and is very large. Considering our use case, local
slow-pitch leagues would appreciate a camera with small error bounds and little to no calibration.
Additionally, it's essential for our users to have an affordable and portable option for recreational
use. The Specialized Imaging Tracker 2 may be too advanced for the operating scenario and out of
the price range for local leagues.

A similar product used in professional sports games is the Veo 3 Sports Cam.
This is a 360-degree camera that not only tracks sports balls but also tracks
players, displays heat maps, match stats, and tags game actions. This device is
known for its object detection accuracy and long battery life. Users can also
live stream their sports games through this camera. These features would
benefit local softball leagues, though they are not needed for operating as a
slow-pitch officiary. The downside to this product is it costs $2,400 and
requires a subscription to operate. Used in a professional sense, the Veo 3
Sports Cam is a successful product. Its features may not be needed for the
primary operations of a slow-pitch officiary tool; however, the high standard
for preserving the integrity of the game with an accurate system gives users the

confidence to use the product in game settings.

The Pocket Radar Smart Coach is another product
specializing in ball detection in a softball setting. This
product is a small device, about the size of a smartphone,
and records a clip of a softball pitch and its speed. The
device is compatible with a mobile app that saves the video

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

and speed of pitches. With a strong user interface, there are many positive user reviews. Users
typically buy this product for the connection to their mobile device, the ability to share and review
their pitches, and a cost-effective solution with a portable design. The Pocket Radar targets users
who recreationally play and practice softball and baseball. Their isolation of extra sensors and
cameras into a handheld device makes it accessible. A drawback to creating a small device is there is
low battery life that limits users to a small usage time. The lower-quality camera has a more
significant error bound than professional cameras, with a 1 mph error. Although this device has a
small battery life and a more significant error bound, it is more tailored for local and recreational
users, receiving positive feedback for their specific use cases.

4.1.3 Technical Complexity

Our slow-pitch softball application has several components that integrate together mathematical,
engineering, and social challenges. Our engineering challenges can be split into two main modules:
the frontend user experience and the height detection. The project's technical complexity would be
a large project to design, prototype, and test. Considering this needs to be developed to be
affordable and portable for local leagues, this increases the complexity as more readily available
technologies should be used for a wider user base with lower costs.

The height detection component of the project will require using a camera feed and multiple object
detection techniques and existing libraries in tandem. Additionally, object detection alone will not
be enough to determine height; a technique must be found to coordinate the ball’s location to a
specific height through geometric calculations or calibrated values. With the limited existing
products, our team must find our own solution to determining height using engineering principles
and practices. Once accomplished, there can be further development to increase the fps or
computation time for frame analysis. As an open-ended component of the project, the technical
design, prototyping, and testing is a true example of an engineering problem within the real world.

The height detection backend component is the application’s “computational brain.” Gathering
calibration information, collecting camera frames, and setting maximum and minimum heights will
need to be incorporated into the system’s frontend display. A user would interact with the program
in several ways to start, end, and view the officiary logs. It is essential to develop an accessible and
guiding frontend for umpires and players to experience a seamless setup and collection process. The
compatibility of the frontend and the backend is also very important. This module is a technically
advanced project, not only developing a user interface but also stitching it with the backend’s
operations and reporting its output.

In total, the technical components of this project provide complex engineering problems that
match the industry standards as a real-world software project.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

A primary design decision was what system we would use for the camera collection and user
interface. This decision will define what our users will need to purchase, calibrate, and gain
familiarity with when running our application. From a technical standpoint, using multiple cameras
would gain more data points to pinpoint the exact height of the ball. However, developing this
product specifically for the ease and affordability of local slow-pitch leagues, we decided to
implement this application on a singular mobile device. This design decision increases the project's
technical complexity but better suits our user base. The application was chosen to be developed
using Google’s app development platform, Flutter, which can be compiled to run on both Android
and iOS. Allowing anyone with a mobile device to install our application invites many users to
interact with the widget-based accessible program. This was our most critical design decision, led
by our social and ethical responsibility and our user needs.

Another design decision was the technologies to use in the object detection of the softball within
the camera frame. This decision was based on the compatibility with Flutter, the speed of the
library’s methods, and the accuracy. After careful consideration and research, we chose C++ as our
programming language for object detection. It is a very fast language with several libraries, such as
OpenCV, to analyze an image. C++ can also be integrated into a Flutter application and be
configured to run on iOS and Android to sustain our cross-platform development. We can use
OpenCV and its KCF algorithm methods to take in an image frame, find a colored object, and track
its movement over time. Integrating a YOLO machine learning model to track sports balls also
provides a stronger and more accurate collection method to validate OpenCV’s tracking.
Additionally, the decision to use OpenCV and YOLO within a C++ project was heavily influenced by
the existence of these libraries in Python. This allows our team to prototype object and height
detection techniques at the beginning of our project’s design stages. Converting our chosen design
to C++ with these libraries can elevate our project and encourage multiple prototype designs.

The final major design decision was the height calculation technique used to take in the position of
a softball within a camera frame and output a specific height. After researching, the vertical pixel
distance is constant and can be converted to feet when calibrated with known heights and a horizon
line (the line from the home plate to the pitcher’s mound). This was found by placing a camera
equidistant from the home plate and the pitcher’s mound, selecting where both are located within
the frame and where a known height exists along the horizon line. The image below shows the
equal segments representing 2ft.

We now have a technique to analyze the (x,y) of the softball and determine if it lies within the
maximum and minimum height bounds set by the user.

4.2.2 Ideation

The design decision we struggled with the most was finding and deciding on the height detection
technique. As mentioned in section 4.2.1, we finalized the decision for finding the corresponding
ground line below the pitch from home plate to pitcher's mound and identifying a known height to
get the vertical pixel-to-feet ratio and turn the detected softball’s (x,y) coordinates into a height
value. There were other prototyped and researched height calculation techniques that we
considered for the final design

● Multi-Camera Detection
○ Set up three cameras in different locations throughout the field.
○ Run the object detection on all the cameras and determine the ball's distance from

each camera with the camera’s detected radius.
○ You can use each camera’s height to triangulate the exact location of the ball,

including height.
○ This violates our design choice for a single camera.

● Machine Learning
○ Given a machine learning model the distance to the softball, calculated by the pixel

radius of the detected softball, and the (x,y) coordinates, a machine learning model
will guess the height.

○ After many iterations of training the model, we found it inconsistent and widely
inaccurate.

○ The search for a geometric calculation technique was needed for fast and accurate
return values.

● Known Radius Geometry
○ With the assumption that the radius stays constant for all softballs, we can use the

number of pixels of the detected softball to find its distance from the camera
○ Given its (x,y) coordinates, we can determine the angle from the camera and use

● Pitching Line Calibration
○ The home plate and pitcher’s mound are identified within the camera frame

○ The pixel-to-distance ratio can be calculated with the known distance between the
bases.

○ The pixel-to-distance ratio was inaccurate as the vertical ratio of pixels differs from
the horizontal ratio.

○ The ratio found in this method will only determine horizontal distances, not
vertical heights.

○ The search for a vertical distance conversion is needed to find the height of a given
(x,y) point.

● Known Heights Calibration
○ The home plate, pitcher’s mound, and known heights are identified within the

camera frame
○ The vertical pixel-to-distance ratio can be calculated from the home plate to the

pitcher’s mound line and known height’s lines.
○ The height can be calculated given the (x,y), getting the number of pixels from the

pitching line, and translating it into feet.
○ Used in the final design.

4.2.3 Decision-Making and Trade-Off

Design Option User Compatibility Observed
Accuracy/Performance

Mathematically
Supported

Multi-Camera
Detection

3/10
It would require users
to place and have
access to multiple
cameras running the
application

9/10
Research shows this
method is fairly
accurate in
triangulating a point,
but the camera
connection will delay
the computation.

10/10
Triangulation is a
technique used in
satellites for GPS
tracking for its
accuracy.

Machine Learning 10/10
No setup would be
needed as the
machine learning
model will handle the
field differences.

4/10
The machine learning
algorithm struggled to
accurately depict
heights when the
camera was moved into
a new environment.

5/10
Machine learning is
the analysis of data
trends, not a direct
hard-coded
mathematical
relation between ball
position and height.

Known Radius
Geomtry

9/10
The height of the
camera would need to
be inputted by the
user.

3/10
The radius of the ball
becomes very small
when the camera is
placed far away, so the
exact distance jumps
when the radius
increases by one pixel.

4/10
The angle of the ball
to the camera based
on its position in the
frame varies from
camera to camera.

Pitching Line
Calibration

7/10
You would have to
select 2 points on the
camera feed as a part
of the setup.

8/10
The observed height
looked fairly accurate
when measuring a few
trials in person, but
reading larger heights
prompted larger errors

7/10
The horizontal
pixel-to-distance
conversation ratio is
similar to vertical,
but not quite the
same.

Known Heights
Calibration

6/10
You would have to
select 4 points on the
camera feed as a part
of the setup.

9/10

The observed
calculated heights
seemed accurate, and
the vertical distance
distribution of pixels
was visually equivalent.

9/10
The vertical known
heights are
equidistant when
viewed and can be
used to calculate a
strong vertical
pixel-to-distance
ratio

We chose the known heights calibration because of the mathematical accuracy it provides. The
observed height still needs to be rigorously tested but has the most significant potential of the
options. The multi-camera detection option was not considered because it did not align with our
cost-effective user needs and requirements for fast computations.

4.3 PROPOSED DESIGN

4.3.1 Overview

4.3.2 Detailed Design and Visual(s)

Starting with the Flutter app on a mobile device, users will have access to set up calibration values
(distance from home to the pitcher's mound, ball color, etc.) for the camera to fit their specific
environment. When they enter the tracking screen, our app will utilize a camera plugin to access
their device’s camera and begin feeding it into our C++ code using Dart FFI. Flutter is written in a
code language called Dart. Dart FFI allows us to run C++ code in a Flutter environment. The C++
code will track the ball based on color for the majority of the tracking. Occasionally, the code will
utilize a YOLO model. This model is created by essentially “training” the code to know what a
softball looks like. This model will be used to correct errors in the color tracking as the
environment variables change such as the lighting or changes of the ball’s speed.

.

4.3.3 Functionality

4.3.4 Areas of Concern and Development

While our design is currently in development, the requirements generated by our users align with
the trajectory of our progress. We are in the process of developing a fully-featured mobile
application with the capabilities of processing softball pitches in real-time – the application is
shaping to be easy to use with a clear prioritization of user experience, essential for ensuring both
referees and players will be able to benefit from the use of the application. Our primary concerns as
of now are ensuring the application runs at a reasonable rate with our softball detection solution,
which could affect the times at which pitch calls are made. Our immediate plans for circumventing
this problem is through thorough testing of our softball detection on native devices to ensure
proper detection runtimes, as well as the continuous optimization of existing detection processes.
As we move into fully integrating our solution onto a mobile device, potential questions for clients
include what other additional features would improve the user experience of our application and
what aspects of our current design could deter from the flow of a softball game?

4.4 TECHNOLOGY CONSIDERATIONS

Our project consists of multiple components that help integrate the two main components of our
design: object detection and mobile app development. We use Google’s app development tool
Flutter, which can compile to run on an Apple iPhone, Android mobile device, or mobile emulators.
Flutter uses Dart for an accessible widget-based design. Flutter’s plugin functionality allows a
smoother cross-platform development when utilizing device components such as the camera. Using
Flutter, we can satisfy our technical challenges of developing an aesthetically pleasing and
accessible user interface with a C++ backend.

Integrated into Flutter’s backend, we use a combination of C++ libraries for object and motion
tracking of the softball within a camera frame. There exist many sports ball tracking systems
currently on the market. However, these systems typically guarantee accuracy with a multi-camera
setup with expensive, high-quality cameras. Our design accommodates local league use with a
camera on a mobile device. With a singular camera on the field providing one plane of vision, our
application’s accuracy relies on precisely detecting the softball within a camera frame. We do this
using OpenCV’s KCF algorithm, which detects an object by color and motion over time.
Additionally, we are using YOLO’s machine learning model to pinpoint the location of a softball;
however, YOLO is more resource-intensive and is used as an infrequent correctional model to
maintain accuracy. Integrating multiple object detection algorithms, libraries, and techniques, we
can use the location of a ball within a calibrated camera field and quickly determine ball heights.

4.5 DESIGN ANALYSIS

So far, we have successfully integrated OpenCV and YOLO in C++ to create a framework capable of
detecting and tracking a softball in flight. This integration has been efficient, allowing us to
confidently believe that our proposed design from 4.3 will be feasible in practice. We currently have
a working Flutter app, and we’ve been able to execute C++ code within the app on an iPhone.
However, we are encountering a significant challenge: although our object detection and tracking
code runs smoothly in the app on a desktop environment, it’s not yet functioning on a mobile
device. The issue stems from needing a custom OpenCV framework for iOS, and a bug in the most
recent OpenCV version has prevented us from successfully building this framework. If we cannot

identify a workaround for this bug, we may need to consider using an earlier OpenCV version that
does not present this issue. Moving forward, we have two main areas to focus on. First, we must
resolve the OpenCV framework bug, as this is essential to achieving full functionality on iOS.
Second, we must optimize our object detection and tracking code to reliably track the softball even
when it’s moving quickly. Currently, the algorithms struggle to capture the ball when it appears as a
streak in each frame. To address this, we are considering increasing the frame rate; modern
smartphones can support up to 240 fps, enabling us to capture higher-quality images of fast-moving
objects. Our next steps involve continuing to troubleshoot the framework bug and exploring
optimization techniques that can handle high-speed tracking. At this point, we don’t foresee any
major feasibility issues with our overall design—our challenges are primarily in the build and
optimization stages. If we can overcome these, we expect the project to perform as designed

5 Testing

5.1 UNIT TESTING

Our solution is primarily software based; this implies the necessity for proper unit testing for each
separate piece of functionality within our code. Because our main solution functionality is divided
among two separate technical areas, the Flutter frontend and our tracking backend, unit testing is
treated differently between the two implementations.

Within our frontend, unit testing occurs with each individual “widget”, or visual component of our
user interface to ensure items appear correctly on screen from our mobile application. This testing
ensures that the user experience of our app remains consistent and that there is a high ease of
access for users. In terms of the tools used for unit testing within our frontend, Flutter comes
bundled with real-time debugging tools, useful for diagnosing and troubleshooting problems that
occur when running an app. These tools can be accessed via a locally hosted interface accessible
upon starting the Flutter app.

Within our backend, unit testing occurs on each individual method. This involves a process of
ensuring, in all cases, the output from a certain method matches its expected functionality. This
unit testing helps to prevent hard-to-trace issues that may populate further along in development.

5.2 INTERFACE TESTING

The interfaces in our design include the graphical user interface built from Flutter, the services
included in the front end used to communicate with the backend, as well as the API included in the
backend. Because our solution resides purely on a mobile phone, no external interfaces are
necessary. The testing of the communication between interfaces will be conducted by ensuring that
data is properly transferred between the front end and the back end; for the case of image data, for
example, it is necessary to ensure that camera input is properly transferred to the correct image
processing endpoint in our backend. The tools to be used with this type of testing include
debugging libraries included in both our Flutter frontend via Dart, as well as debugging libraries
included in C++. Xcode and Android Studio, the two IDEs responsible for building iOS and Android
apps respectively also provide support for further interface testing which will be essential in the
proper coverage of our solution.

5.3 INTEGRATION TESTING

The critical integration paths in our design are ensuring that all front-end graphical components fit
together seamlessly, as well as the front-end interface communication services are properly able to
communicate with our backend image processing to retrieve modified image data. In reference to
our requirements, these paths are critical as our solution needs to provide a seamless user
experience while also ensuring our solution stays performant to the expectation that it can facilitate
a real-time softball game.

These paths will be tested by connecting the elements of our solution and measuring the latency,
unexpected visual artifacts, and general correctness of the resulting output. The tools we can use to
facilitate this process include the aforementioned IDEs corresponding to iOS and Android
development, as well as general debugging tools included in the Flutter SDK and in C++.

5.4 SYSTEM TESTING

System testing within our application involves testing the fully-integrated system in a real-world
environment. Because our solution involves the physical tracking and processing of image data in
relation to softball, much of our system testing occurs on softball fields, pitching softballs and
recording the accuracy and speed of our application.

Specifically, in reference to the requirements of our solution, system testing must ensure that our
solution is functional from a non-physically-obstructive point in the field of play and that various
environmental factors (e.g. lighting) don’t interfere with the functionality of our application. System
testing also reinforces that our solutions accuracy in its height detection calls aligns with our
requirements.

In reference to the tools required to complete such system testing, physical height indicators can be
used to ensure a pitch call from our solution aligns with the actual height of the softball on the
field. Other areas of functionality and their testing are covered in unit, interface, and integration
testing.

5.5 REGRESSION TESTING

We have implemented a modular design strategy to ensure that each feature is separated in its
implementation from other features; this strategy also fares well with other types of testing to
provide an easy way to test certain features quickly and efficiently. By using this modular approach,
it makes it very difficult to implement new features that break old ones; by separating our feature
implementations, we ensure that each feature acts within its own scope without affecting the
functionality of different features. This approach is driven by the requirement that our system
remain efficient and that its ease of accessibility remains consistent.

5.6 ACCEPTANCE TESTING

Our design requirements will be verified and validated through the proper testing of our system.
Testing such as regression testing and system testing will help us to internally verify our
requirements are being met. We will also cross reference our requirements findings with input from
the client to ensure that our requirements are being met as much as possible; this cross referencing
will help us to reduce bias from our standpoint by also weighing the perspective of our client. Input
is to be gathered from our client through application demonstrations and progress reports.

5.7 RESULTS

The results of our testing thus far are that the user experience of our system is operational, however
the integration of our tracking solution needs further development to meet the standards of our
users. Currently, the amount of latency present in our solution does not facilitate a real-time
tracking solution per the requirements of our solution, defining the need for more testing to be
done in terms of our interface design and integration.

For our next steps, as we continue to develop our solution and work on properly integrating our
image tracking solution into our mobile application, we need to ensure that we focus on improving
the latency of our application as well as continue to refine the user experience of our application to
meet the standards of our users.

6 Implementation
Object Detection:

In our current iteration of softball tracking, we utilize C++, OpenCV KCF tracking, and Yolo models.
The detection code is written in C++ and does the bulk of the tracking using OpenCV’s KCF tracker,
which detects the ball based on motion. Every 30 frames, a machine learning-based Yolo model
trained on sports balls is called, which corrects any errors in the KCF tracking process. We only
make occasional calls to the Yolo model to improve the overall runtime of our tracking code, which
will help with the speed of the calls. We created a prototype of this implementation that draws a
bounding circle around the ball on the screen. Still, the end solution will return the ball's position
on the screen to compare to the height-reference lines we will draw on the screen for height
detection.

Height Detection:

Our initial design idea was to measure the height of the ball from the camera and determine if the
pitch is illegal; however, we were able to create an alternative solution by creating height lines on
the screen based on images of known reference heights that will be taken by the user. With these
height lines, we removed the need to measure the height of the ball. Now, we can utilize the

position of the ball on the screen return from the C++ object detection code and compare it to the
position of the height lines to determine if the ball is out of the required height range.

Screen Development:

We have the main camera screen partially developed with access to record video from the camera
and cache the recording in a history page. Accessing the from Flutter will allow us to pass
individual frames to the object detection code. The video caching functionality will allow us to
store past pitches for review or feedback once we fully integrate the height line and object detection
implementation into our Flutter app.

7 Ethics and Professional Responsibility

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area of
Responsibility

Definition IEEE Item Team Interaction

Work Competence Perform professional,
high-quality work

“To seek, accept, and
offer honest criticism

The team focused on
this area by

of technical work, to
acknowledge and
correct errors…”

developing solutions
and experimenting
with modern
technologies to ensure
we create the best
solution.

Financial
Responsibility

Deliver reliable
products that are
reasonably priced

“To be honest and
realistic in stating
claims or estimates
based on available
data…”

Our design choices
are based on usability,
such as having the
app be free and not
requiring an
additional camera,
which upholds this
area.

Communication
Honesty

Report truthful work
to shareholders

“To be honest and
realistic in stating
claims or estimates
based on available
data…”

We have upheld this
area by meeting
weekly with the client
and frequently
communicating our
progress and design
choices.

Health, Safety,
Well-Being

Minimize
shareholders’ health
and safety risks

“To hold paramount
the safety, health, and
welfare of the
public…”

The team wanted to
minimize injury risk
during the setup of
our product, which
helped lead us to our
app-based solution,
which eliminated the
need to set up
multiple cameras.

Property Ownership Respect the property
of others

“To credit properly
the contributions of
others…”

We followed this area
by acknowledging the
individual
contributions of the
team and by
collaborating on
different areas of the
project so multiple
members could gain
knowledge in multiple
areas.

Sustainability Protect environmental
and natural resources

“To strive to comply
with ethical design
and sustainable
development
practices…”

We focused on this
area by making our
app cross-compatible
and usable on
multiple iterations of

phones, meaning our
users will not need to
continue to purchase
new devices to use
our product.

Social Responsibility Make products that
benefit society

“To improve the
understanding by
individuals and
society…”

Our team has a
responsibility to
produce accurate data
and to better the
experience of rec
league slowpitch
softball players and
umpires, so we
focused on making
our solution easy to
use and available to
slowpitch leagues.

Best Area of Responsibility; Social Responsibility:

We have chosen to approach this standard by designing our project to prioritize affordability,
portability, and easy accessibility for local communities to have access to simple officiating
assistance. Although this further complicates our software tracking model, it simplifies the
application for the community. This decision in our development was ethically driven with the
community in mind rather than solely for efficient development.

Worst Area of Responsibility; Sustainability:

We haven’t been prioritizing the efficiency and runtime of our code up to this point as we’re trying
to get prototypes working, which could result in more power consumption and more contribution
to negative environmental impacts. Our team plans on working to not only write code but to refine
it to be as efficient as possible. Thus reducing the amount of power needed to run our app.

7.2 FOUR PRINCIPLES

Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public health,
safety, and
welfare

Our product
aims to improve
the state of rec
league softball
games, which
benefits the
enjoyment of
everyone
involved.

We are avoiding
using multiple
cameras which
reduces risk
during setup and
improves the
usability of our
product.

We allow users
to store past
pitches, so they
can make their
own decisions
based on
non-subjective
data, improving
the enjoyment of
the game.

Our app will
provide
unbiased, real
data to help
officiate games,
which will
improve the
fairness of the
game.

Global, cultural,
and social

Promotes fair
play by providing
an objective tool
for measuring
pitch height,
which will
reduce
arguments
between players
and officials.

Keeping our
solution focused
on a single
device allows a
normal game of
softball to play
normally without
disrupting the
existing league
culture.

Since the height
range of our app
will be
customizable,
different cultures
and leagues can
set up the app to
work for their
needs.

The height range
customization of
our app will
allow multiple
leagues with
different rules to
improve the
equality of how
the game is
called.

Environmental Focusing on
developing our
project on a
phone reduces
the need for
multiple tracking
cameras
benefitting the
environmental
impact.

Avoiding
multiple cameras
allows our users
to use an existing
phone instead of
having to pay
and ship a new
camera.

Our product
allows users to
choose to use
their existing
phone instead of
making more
environmental
impacts by
paying for more
cameras.

Our app will be
able to be
utilizied by all
leagues, even
ones with limited
resources. This
keeps them form
needing to invest
in other cameras
that may
contribute to
environmental
damage.

Economic Our solution is
free which
eliminates the
need to purchase
expensive
tracking
equipment.

Using one device
to perform all of
the tracking
helps us keep the
app free because
we can forgo the
cost of an
additional
camera.

A league can
make their own
choices on
whether or not
to use our app or
not, which gives
them control
over any
economicals
adjustments it
my require such
as a league
phone to use the
app.

The free price
point of our app
allows a wide
range of leagues
with different
financial
backgrounds can
utilize our app to
improve the
league.

Area We Focused On; Public health, safety, and welfare X Beneficence:

We are aiming to improve the enjoyment of the game. We plan to achieve this by ensuring simple
setup for umpires, returning accurate data so the right calls are constently being made, and being
configurable for different height ranges so it can be used by a variety of leagues,

Area of Improvement; Environmental X Respect For Autonomy:

Based on the result of further testing, me may end up needed to restrict our app to only work on
phones with a certain camera quality. Older phones with worse may not be able to provide the data
needed for accurate tracking. The could result in leagues without immediate access to a high

quality phone having to purchase a new device through shipping methods that contribute to
environmental damage.

We plan on overcoming this negative aspect by ensuring our app can run on a phones that are
widely available and already owned by a majority of people. This will keep the availability of our
app high and will reduce the need to purchase a new device.

7.3 VIRTUES

● Accuracy
○ We strive to provide accurate for our users, as it is important for illegal pitches to

be called correctly as to not distress between players, officials, and fans.
○ We will achieve this virtue by continuously refine our ball tracking code and

providing easy-to-use collibration steps so our app can be calibrated to fit the
needs of each field.

● Empathy
○ Our app is solely focused on bettering the game for players, officials, and fans. We

want to ensure that we are always prioritizing their needs over what makes it easier
for us.

○ Communicating our design choices with our client and collecting feedback from
testing are how we will ensure that we are always taking user needs into account.

● Innovation
○ We want our product to be easily integrating into existing leagues. So, we are

innovating a single camera design approach that will make it easy to set up without
the needs for multiple cameras.

○ Constant prototyping and research into different tracking methods will help keep
us engaged with new ideas and strategies as to how to improve our single camera
solution. Current team innovation like or height line system are already helping us
improve our height detection methods.

Each team member should also answer the following:

● Identify one virtue you have demonstrated in your senior design work thus far? (Individual)
o Why is it important to you?
o How have you demonstrated it?

● Identify one virtue that is important to you that you have not demonstrated in your senior
design work thus far? (Individual)

o Why is it important to you?
o What might you do to demonstrate that virtue?

● Sully

o Demonstrated Virtue: Persistence

▪ With any project, there are bound to be roadblocks that come up that

prevent progress. I believe it is essential that I am persistent in attacking
these roadblocks and continuing to experiment so that we can solve our
problems.

▪ I demonstrated this virtue by continuing to attempt to integrate our C++

code into the Flutter app. There have been many issues with the
integration, mainly stemming from the OpenCV libraries having issues
running on iOS, and I need to persist through this issue so we can
complete our app. While I haven’t been able to fully integrate the code yet,
I have made good progress through the OpenCV tracking framework for
iOS I helped create.

o Non-Demonstrated Virtue: Adaptability

▪ We are utilizing many different technologies in the making of our app. So,

it is important that I become familiar with the all of the technologies we
are using, so I now how all of the components work together in detail.

▪ I will demonstrate this virtue by pairing with other team members who are

working on different areas and learning how they developed their ideas so
I can help with issues in the future.

● Cameron

o Versitility

▪ This project has brought me outside of my comfort zone numerous times

and required me to do things I have no experience with. Learning flutter
and all of the ML topics was new to me and forced me to go outside my
current knowledge to complete the tasks.

▪ This is important to me because it is a necessity in the workforce. New

technologies are constantly popping up, so a good engineer must be able
to adapt to these new technologies and learn how to best use them.

o Communication

▪ I felt like this semester, I wasn’t always communicating well with my team

and that hurt my work. With better communication I would be able to
work through issues quicker and help the engineering process as whole.

▪ Hopefully, I’ll be able to attend the weekly meetings next semester which

will help immensely. Other than that, I just need to be more willing to
reach out to my teammates for help and to keep them updated on my
progress.

8 Closing Material

8.1 CONCLUSION

We have made individual components for the three main parts of our project including object
tracking, determining the height of a pitch, and developing the main screen of our app. In the
future, we need to fully integrate the components in Flutter and begin testing complete
functionality. We also plan to continue refining our tracking model, improving the look of our app
screens, and ensuring our height detecting methods are accurate across different environments.

The best plan of action to achieve our goals by condensing our C++ code to only focusing on taking
a single frame and returning the the position of the ball. We want a majority of the code to exist in
the Flutter side of our project which reduces the load on the back-end, which will improve the
speed of our tracking algorithm. We will also continue to receive user feedback on the appearance
of our app so we can provide the most user-friendly product we can.

Currently, we are experience issues integrating our C++ code into our Flutter application. In future
iterations, we could focus more attention on getting our C++ integrated as our end product requires
us to be able to execute our code on a mobile device.

8.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE). See link:
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

[1] “C Interop using Dart:FFI,” Dart, https://dart.dev/interop/c-interop (accessed Dec. 7, 2024).

[2] “Required packages,” OpenCV, https://docs.opencv.org/4.x/d5/da3/tutorial_ios_install.html
(accessed Dec. 7, 2024).

[3] “Material library,” material library - Dart API,
https://api.flutter.dev/flutter/material/material-library.html (accessed Dec. 7, 2024).

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

9 Team

9.1 TEAM MEMBERS

● Ethan Gruening
● Casey Gehling
● Sullivan Fair
● Josh Hyde
● Cameron Mesman
● Andrew Vick

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT

● App Development
● Flutter Framework
● Machine Learning
● OpenCV
● C++

9.3 SKILL SETS COVERED BY THE TEAM

● Ethan Gruening:
● Casey Gehling:
● Sullivan Fair: App Development, Frameworks
● Josh Hyde:
● Cameron Mesman: App development, Flutter, C++
● Andrew Vick:

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

● Agile

9.5 INITIAL PROJECT MANAGEMENT ROLES

● Team Organization: Ethan Gruening
● Client Interaction: Casey Gehling
● Machine Learning Integration: Andrew Vick
● Individual Component Development: Sullivan Fair
● Research: Josh Hyde
● Testing: Cameron Mesman

9.6 Team Contract

Team Name ____________sdmay25-11________________

TeamMembers:

1) __________Andrew Vick__________ 2) ________Casey Gehling___________

3) __________Cameron Mesman______ 4) ________Joshua Hyde_____________

5) __________Ethan Gruening________ 6) ________Sullivan Fair_____________

7) _______________________________8) ________________________________

Team Procedures

Day, time, and location (face-to-face or virtual) for regular teammeetings:

1 pm every Wednesday (possibly)

2 pm every Monday with advisor (Dr. Fila)

Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):

Discord

Decision-making policy (e.g., consensus, majority vote):

Majority Vote

Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

Andrew Vick will record meeting minutes, which will be stored in a document on our drive, and I
will send a message in Discord for that meeting.

Participation Expectations

Expected individual attendance, punctuality, and participation at all teammeetings:

We are expected to attend, share, and be on time for all meetings

Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Everyone is expected to meet deadlines, make meaningful contributions to the project, and be on
time.

Expected level of communication with other teammembers:

Everyone is expected to be active in the discord and respond to teamwide questions within one
business day.

Expected level of commitment to team decisions and tasks:

Everyone is expected to be committed to team decisions and tasks. This extends to actively
engaging in discussions and conveying your ideas.

Leadership

Leadership roles for each teammember (e.g., team organization, client interaction,
individual component design, testing, etc.):

Team Organization: Ethan Gruening

Client Interaction: Casey Gehling

Machine Learning Integration: Andrew Vick

Individual Component Development: Sullivan Fair

Research: Josh Hyde

Testing: Cameron Mesman

Strategies for supporting and guiding the work of all teammembers:

Weekly standup meetings where we discuss the week's events and ensure everyone is keeping up
with the workload.

Strategies for recognizing the contributions of all teammembers:

During weekly standup every member will share what they worked on and any information they
found regarding the development of our product. This allows every member to share their
contributions and receive feedback.

Collaboration and Inclusion

Andrew Vick, Software Engineering. Some of my relevant skills include C/C++, Python, and IoT
devices. Most of my experience has come from personal projects for instance, using Python, I
created my own virtual assistant.

Casey Gehling, Computer Engineering. Relevant technical skills are Embedded Programming,
Networking, Fullstack Development, and UI Design. Additionally, I have relevant experience in
client communication and requirements gathering.

Sullivan Fair, Software Engineering. Relevant skills include general coding knowledge of Java, C, C#,
Python, JavaScript, AWS knowledge, GIT, and cybersecurity knowledge.

Ethan Gruening, Software Engineering. My relevant skills include, but are not limited to, Python, C,
Java, JavaScipt, and AWS. Most of my projects/experiences involve user interphases, I/O devices,
and API service integrations.

Josh Hyde, Computer Engineering. My relevant skills are generic coding in C/C++ and Java, and
some database work with MySQL. I also have been in different groups before and have had to work
together towards a common project goal.

Cameron Mesman, Computer Engineer. My relevant skills are coding with C and Java. I have
experience programming embedded systems, app design (backend, frontend, and database
languages), and computer architecture.

Strategies for encouraging and supporting contributions and ideas from all teammembers:

Goal-Setting, Planning, and Execution

Team goals for this semester:

Formulate an initial product design.

Have an action plan for developing the product.

Strategies for planning and assigning individual and teamwork:

During team meetings, we will identify what needs to be worked on for the week. From there, we
will assign who tackles which task based on their expertise.

Strategies for keeping on task:

Weekly goals and check-ins

Consequences for Not Adhering to Team Contract

How will you handle infractions of any of the obligations of this team contract?

In the event of an infraction by a team member, the team as a whole will reach out to the member
to see why they aren’t adhering to our contract.

What will your team do if the infractions continue?

If the infractions continue and we cannot resolve the issue internally, we will finally reach out to
Professor Fila regarding the member.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) _________________Sullivan Fair_____________________ DATE __09/18/2024_______

2) _________________Andrew Vick_____________________ DATE __09/18/2024_______

3) _________________Casey Gehling____________________ DATE __09/19/2024_______

4) _________________Ethan Gruening___________________ DATE __09/19/2024_______

5) _________________Josh Hyde_______________________ DATE __09/19/2024_______

6) _________________Cameron Mesman_________________ DATE __09/19/2024_______

